Respuesta :

gmany

AP and CD are parallel. Therefore the segments AC, CR, DR and PD are in proportion:

[tex]\dfrac{CR}{DR}=\dfrac{AC}{PD}[/tex]

We have

CR = x

DR = 42

AC = 10

PD = 15

Substitute:

[tex]\dfrac{x}{42}=\dfrac{10}{15}[/tex]               cross multiply

[tex]15x=(42)(10)[/tex]

[tex]15x=420[/tex]      divide both sides by 15

[tex]x=\dfrac{420}{15}[/tex]

[tex]\boxed{x=28}[/tex]

Answer:

x = 28

Step-by-step explanation:

We have similar triangles so

RC              RD

----------- = -------------

RA                RP

Substituting in

x                42

----------- = -------------

x+10                42+15

x                42

----------- = -------------

x+10                57

Using cross products

57*x = 42(x+10)

Distribute

57x = 42x+420

Subtract 42 from each side

57x-42x = 42x-42x+420

15x = 420

Divide by 15

15x/15 = 420/15

x = 28