Answer:
The value of x i.e DE is [tex]6.7m^2[/tex]
Step-by-step explanation:
Given a parallelogram has sides measuring 23.8 m and 35.3 m. The height corresponding to the 23.8-m base is 9.9 m. we have to find the height corresponding to the 35.3-m base which is DE
Area of parallelogram ABCD=[tex]Base AB\times heightDE[/tex]
=[tex]35.3\times x[/tex]
=[tex]35.3x m^2[/tex]
Area of parallelogram ABCD=[tex]Base BC\times heightDF[/tex]
=[tex]23.8\times 9.9[/tex]
=[tex]235.62 m^2[/tex]
Above two is the area of same parallelogram
⇒ [tex]35.3x=235.62[/tex]
⇒ [tex]x=6.6747\sim6.7m^2[/tex]
Hence,The value of x i.e DE is [tex]6.7m^2[/tex]