What is the RANGE of the function y = √x+5

A) Y ≥ -5
b) Y ≥ 0
c) Y ≥ √5
D) Y≥ 5


Also need the range of the funtion y= ³√x+8 but maybe it's one question per ask. Sorry if so...

Respuesta :

Answer:

Option D is correct Y≥ 5.

1)[tex]y= \sqrt{x}+5[/tex]-  [tex]R=[5,\infty),[y|y\geq 5][/tex]

2) [tex]y=\sqrt[3]{x}+8[/tex]- [tex]R=[-\infty,\infty),[y|y\geq \mathbb{R}][/tex]

Step-by-step explanation:

Given : Function [tex]y= \sqrt{x}+5[/tex]

To find : The range of the function

Solution : The function [tex]y=f(x)= \sqrt{x}+5[/tex]

The range of a function y=f(x) is the set of values y takes for all values of x within the domain of y=f(x).

The domain of given function f(x) is the set of all values of x in the interval

[tex]D=[0,\infty),[x|x\geq 0][/tex]

As x takes values from 0 to [tex]\infty[/tex],

then,  [tex] \sqrt{x}+5[/tex] takes values from [tex] \sqrt{0}+5[/tex] =5 to  [tex] \sqrt{\infty}+5=\infty[/tex]

Therefore, the range of the  [tex]y= \sqrt{x}+5[/tex] is given by

[tex]R=[5,\infty),[y|y\geq 5][/tex]

Therefore, Option D is correct Y≥ 5.

Similarly, we can also find the range of [tex]y=\sqrt[3]{x}+8[/tex]

Firstly the domain of the function

[tex]D=[-\infty,\infty),[x|x\geq \mathbb{R}][/tex]

So, the range of the function is

[tex]R=[-\infty,\infty),[y|y\geq \mathbb{R}][/tex]

Ver imagen tardymanchester