Respuesta :

Answer:

B

Step-by-step explanation:

x/4 + 1/8

------------------

x^2/4

Multiply the top and bottom by 8 to clear the fractions

x/4 + 1/8                    8

------------------ *---------------

x^2/4                          8

8*(x/4 + 1/8)  

------------------

8*x^2/4  

2x+1

------------------

2x^2                              

Answer:  The correct option is (B) [tex]\dfrac{2x+1}{2x^2}.[/tex]

Step-by-step explanation:  We are given to simplify the following expression :

[tex]E=\dfrac{\dfrac{x}{4}+\dfrac{1}{8}}{\dfrac{x^2}{4}}.[/tex]

We will be using the following property :

[tex]\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times\dfrac{d}{c}.[/tex]

The simplification is as follows :

[tex]E\\\\\\=\dfrac{\dfrac{x}{4}+\dfrac{1}{8}}{\dfrac{x^2}{4}}\\\\\\=\dfrac{\dfrac{2x+1}{8}}{\dfrac{x^2}{4}}\\\\\\=\dfrac{2x+1}{8}\times \dfrac{4}{x^2}\\\\\\=\dfrac{2x+1}{2x^2}.[/tex]

Thus, the required simplified form of the given expression is [tex]\dfrac{2x+1}{2x^2}.[/tex]

Option (B) is CORRECT.