Respuesta :
Answer:
Perimeter of rectangle is 24.74 squnits.
Step-by-step explanation:
Given The coordinates of the vertices of a rectangle are (-8,2),(0,4),(1,0), and (-7,-2). we have to find the perimeter of rectangle.
As we know,
Perimeter of rectangle=2(L+B)
Length of rectangle=[tex]\sqrt{(0+8)^2+(4-2)^2}=\sqrt64+4=\sqrt68=2\sqrt17[/tex]
Breadth of rectangle=[tex]\sqrt{(1-0)^2+(0-4)^2}=\sqrt1+16=\sqrt17[/tex]
Now, Perimeter=[tex]2(2\sqrt17+\sqrt17)[/tex]
= [tex]2(3\sqrt17)=6\sqrt17units=24.74 squnits[/tex]

Answer:
Perimeter of rectangle =24.7 units
Step-by-step explanation:
From the figure, Perimeter of the rectangle=[tex]2(length+breadth)[/tex]
=[tex]2(BC+CD)[/tex]
Now, BC=[tex]\sqrt{(0-1)^{2}+(4-0)^{2}}=\sqrt{1+16}=\sqrt{17}=4.1 units[/tex]
and CD=[tex]\sqrt{(1+7)^{2}+(0+2)^{2}}=\sqrt{64+4}=\sqrt{68}=8.2 units[/tex]
Therefore,perimeter of the rectangle= [tex]2(4.1+8.2)=2(12.3)=24.7 units[/tex].
