Answer:
Option (b) is correct.
Using the Zero-Product Property, on the given equation [tex](3x-6)(5x+3)=0[/tex] we get, [tex]x=2[/tex] and [tex]x=\frac{-3}{5}[/tex]
Step-by-step explanation:
Consider the given equation , [tex](3x-6)(5x+3)=0[/tex]
Zero- product property states that if the product of two term is zero then either first term is zero or second term is zero
That is [tex]p.q=0 \Rightarrow p=0\ \text{or} \ q=0[/tex]
Consider the given equation , [tex](3x-6)(5x+3)=0[/tex]
Applying zero-product property, we get,
[tex](3x-6)(5x+3)=0[/tex]
this implies that either [tex](3x-6)=0[/tex] or [tex](5x+3)=0[/tex]
either [tex]x=2[/tex] or [tex]x=\frac{-3}{5}[/tex]
Thus, using the Zero-Product Property, on the given equation [tex](3x-6)(5x+3)=0[/tex] we get, [tex]x=2[/tex] and [tex]x=\frac{-3}{5}[/tex].