Respuesta :
Answer:
The Inverse variation states a relationship between the two variable in which the product is constant.
i.e [tex]x \propto \frac{1}{y}[/tex]
then the equation is of the form: [tex]xy = k[/tex] where k is the constant of variation.
As per the given information: It is given that x and y vary inversely and that y = 1/6 when x = 3.
then, by definition of inverse variation;
xy = k ......[1]
Substitute the given values we have;
[tex]3 \cdot \frac{1}{6} = k[/tex]
[tex]\frac{1}{2} = k[/tex]
Now, find the value of y when x = 10.
Substitute the given values of x=10 and k = 1/2, in [1] we have;
[tex]10y = \frac{1}{2}[/tex]
Divide both sides by 10 we get;
[tex]y = \frac{1}{20}[/tex]
therefore, a function that models the inverse variation is; [tex]xy = \frac{1}{2}[/tex] and value of [tex]y = \frac{1}{20}[/tex] when x = 10.
Answer:
y = 1/20 when x = 10
Explanation:
We know that x and y vary inversely and [tex]y=\frac{1}{6}[/tex] when [tex]x=3[/tex].
So we can write the function of an inverse variation as:
[tex] y [/tex] ∝ [tex] \frac{1} {x} [/tex]
[tex] y = \frac {k} {x} [/tex]
Finding the constant [tex] k [/tex]:
[tex]\frac{1}{6} =\frac{k}{3}[/tex]
[tex]k=\frac{1}{6}*3[/tex]
[tex]k=\frac{1}{2}[/tex]
Now finding the missing value [tex] y [/tex]:
[tex]y=\frac{\frac{1}{2}}{10}[/tex]
[tex]y = \frac{1}{2} * \frac{1}{10} [/tex]
[tex]y = \frac{1}{20}[/tex]
Therefore, the missing value is [tex](10, \frac{1}{20} )[/tex].