The values (9.4,11) and (11,y) are from an inverse variation. Find the missing value and round to the nearest hundredth.

Respuesta :

Answer: 9.4

Step-by-step explanation:

Here the x-coordinates and y-coordinates have the inverse relation.

⇒ [tex]x\propto\frac{1}{y}[/tex]

⇒ [tex]x=\frac{k}{y}[/tex]

Where k is variation constant.

Since, point (9.4, 11) is from the inverse variation,

Therefore, this point must be satisfy the above condition,

That is,    [tex]9.4=\frac{k}{11}[/tex]

[tex]k=103.4[/tex]

Thus, the relation between the coordinates is,

[tex]x=\frac{103.4}{y}[/tex]

Put x = 11, in the above function,

[tex]11=\frac{103.4}{y}[/tex]

[tex]y=\frac{103.4}{11}=9.4[/tex]

Answer:

0.94

Explanation:

We know that the given values (9.4,11) and (11,y) are from an inverse variation.

So we can write the function of an inverse variation as:

[tex] y [/tex] ∝ [tex] \frac{1} {x} [/tex]

[tex] y = \frac {k} {x} [/tex]

Finding the constant [tex] k [/tex]:

[tex] 11 = \frac {k}{9.4} [/tex]

[tex] k = 9.4*11 [/tex]

[tex] k = 10.34 [/tex]

Now finding the missing value [tex] y [/tex]:

[tex] y = \frac {10.34}{11} [/tex]

[tex]y = 0.94[/tex]

Therefore, the missing value is (11, 0.94).