Solve 3x2 + 4x = −5.

A) the quantity of negative 2 plus or minus i square root 11 all over 3
B) the quantity of negative 2 plus or minus 4i square root 3 all over 3
C) the quantity of negative 2 plus or minus 2 square root 11 all over 3
D) the quantity of negative 2 plus or minus 4i square root 3 all over 3

Respuesta :

Answer:

[tex]x=\frac{-2\pm \sqrt{11}i }{3}[/tex]

Step-by-step explanation:

The given equation is

[tex]3x^2+4x=-5[/tex]

We rewrite in the general quadratic equation form to get,


[tex]3x^2+4x+5=0[/tex]


By comparing to [tex]ax^2+bx+c=0[/tex], we have

[tex]a=3,b=4,c=5[/tex]


We can solve using the quadratic formula, which is given by


[tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]


We substitute the values to obtain;


[tex]x=\frac{-4\pm \sqrt{4^2-4(3)(5)} }{2(3)}[/tex]


[tex]x=\frac{-4\pm \sqrt{16-60} }{6}[/tex]


[tex]x=\frac{-4\pm \sqrt{-44} }{6}[/tex]


[tex]x=\frac{-4\pm 2\sqrt{11}i }{6}[/tex]


[tex]x=\frac{-2\pm \sqrt{11}i }{3}[/tex]


The correct answer is A.








Answer:

A) the quantity of negative 2 plus or minus i square root 11 all over 3

Step-by-step explanation:

formula:  x = [-b ±√(b²-4ac)]/2a

The given quadratic equation be,

3x² + 4x = -5

⇒ 3x² + 4x + 5 = 0

Solution:

a = 3, b = 4 and c = 5

x = [-b ±√(b²-4ac)]/2a

x= [-4 ±√(4²-4*3*5)]/2*3

x = [-4 ±√-44]/6

x = [-4 ±2i√11]/6

x = [-2 ±i√11]/3

Therefore the correct answer is option A) the quantity of negative 2 plus or minus i square root 11 all over 3