Simplify the expression 2√ 20 − 3√ 7 − 2√ 5 + 4√ 63 .

Answer:
A
Step-by-step explanation:
Simplify the expression by reducing the square roots if possible:
[tex]2\sqrt{20} -3\sqrt{7} -2\sqrt{5} +4\sqrt{63} \\\\2\sqrt{4*5}-3\sqrt{7} -2\sqrt{5} +4\sqrt{7*9} \\\\2*2\sqrt{5} -3\sqrt{7} -2\sqrt{5} +4*3\sqrt{7}\\\\ 4\sqrt{5} -2\sqrt{5} -3\sqrt{7}+12\sqrt{7} \\\\2\sqrt{5} +9\sqrt{7}[/tex]
Since 4 and 9 are factors within the square root and perfect squares themselves, they can be removed to outside the square root. This simplifies the roots into two types [tex]\sqrt{5}[/tex] and [tex]\sqrt{7}[/tex]. To combine like terms, subtract the coefficients in front of them.
A is the solution.