Respuesta :

Answer: Your answer would be A.

I hope this helps!


Answer:

A

Step-by-step explanation:

Simplify the expression by reducing the square roots if possible:

[tex]2\sqrt{20} -3\sqrt{7} -2\sqrt{5} +4\sqrt{63} \\\\2\sqrt{4*5}-3\sqrt{7}  -2\sqrt{5} +4\sqrt{7*9} \\\\2*2\sqrt{5} -3\sqrt{7} -2\sqrt{5} +4*3\sqrt{7}\\\\ 4\sqrt{5} -2\sqrt{5} -3\sqrt{7}+12\sqrt{7}  \\\\2\sqrt{5} +9\sqrt{7}[/tex]

Since 4 and 9 are factors within the square root and perfect squares themselves, they can be removed to outside the square root. This simplifies the roots into two types [tex]\sqrt{5}[/tex] and [tex]\sqrt{7}[/tex]. To combine like terms, subtract the coefficients in front of them.

A is the solution.