Complete the following exercises by applying polynomial identities to complex numbers.

Factor x2 + 64. Check your work.
Factor 16x2 + 49. Check your work.
Find the product of (x + 9i)2.
Find the product of (x − 2i)2.
Find the product of (x + (3+5i))2.

Respuesta :

Answer:

(a)

[tex]x^2+64=(x-8i)(x+8i)[/tex]

(b)

[tex]16x^2+49=(4x-7i)(4x+7i)[/tex]

(c)

[tex](x+9i)^2=x^2+18xi-81[/tex]

(d)

[tex](x-2i)^2=x^2-4xi-4[/tex]

(e)

[tex](x+(3+5i))^2=10ix+30i+25i^2+x^2+6x+9[/tex]

Step-by-step explanation:

(a)

we are given

[tex]x^2+64[/tex]

we can also write as

[tex](x)^2+8^2[/tex]

[tex](x)^2-(8i)^2[/tex]

now, we can use factor formula

[tex]a^2-b^2=(a-b)(a+b)[/tex]

we get

[tex]x^2+64=(x-8i)(x+8i)[/tex]

(b)

we are given

[tex]16x^2+49[/tex]

we can also write as

[tex](4x)^2+7^2[/tex]

[tex](4x)^2-(7i)^2[/tex]

now, we can use factor formula

[tex]a^2-b^2=(a-b)(a+b)[/tex]

we get

[tex]16x^2+49=(4x-7i)(4x+7i)[/tex]

(c)

[tex](x+9i)^2[/tex]

we can use formula

[tex](a+b)^2=(a^2+2ab+b^2)[/tex]

so, we can write as

[tex](x+9i)^2=x^2+2x\cdot \:9i+\left(9i\right)^2[/tex]

we can simplify it

and we get

[tex]=x^2+18ix-81[/tex]

[tex]=x^2+18xi-81[/tex]

(d)

[tex](x-2i)^2[/tex]

we can use formula

[tex](a+b)^2=(a^2+2ab+b^2)[/tex]

so, we can write as

[tex](x-2i)^2=x^2-2x\cdot \:2i+\left(2i\right)^2[/tex]

we can simplify it

and we get

[tex]=x^2-4ix-4[/tex]

[tex]=x^2-4xi-4[/tex]

(e)

[tex](x+(3+5i))^2[/tex]

we can distribute

so, we can write as

[tex]=\left(5i+x+3\right)\left(5i+x+3\right)[/tex]

[tex]=xx+x\cdot \:3+x\cdot \:5i+3x+3\cdot \:3+3\cdot \:5i+5ix+5i\cdot \:3+5i\cdot \:5i[/tex]

[tex]=xx+3x+5ix+3x+3\cdot \:3+3\cdot \:5i+5ix+5\cdot \:3i+5\cdot \:5ii[/tex]

now, we can simplify it

[tex]=10ix+30i+25i^2+x^2+6x+9[/tex]