Write the given function as the composite of two functions, neither of which is the identity function f(x)=x
f(x)=[tex]\sqrt[3]{x^{2}+2 }[/tex]

Respuesta :

Answer:

composite functions are

[tex]f(x)=\sqrt[3]{x}[/tex]

[tex]g(x)=x^2+2[/tex]

Step-by-step explanation:

We are given

[tex]f(x)=\sqrt[3]{x^2+2}[/tex]

Since, f(x) is composite function

[tex]f(x)=f(g(x))[/tex]

Let's assume

[tex]g(x)=x^2+2[/tex]

we can replace x^2+2 as g(x)

[tex]f(g(x)))=\sqrt[3]{g(x)}[/tex]

now, we can replace g(x) as x

[tex]f(x)=\sqrt[3]{x}[/tex]

so, composite functions are

[tex]f(x)=\sqrt[3]{x}[/tex]

[tex]g(x)=x^2+2[/tex]