Respuesta :

Answer:

x can be cancelled

Step-by-step explanation:

we are given

[tex]\frac{4x^3-10x^2+6x}{2x^3+x^2-3x}[/tex]

Firstly, we will factor numerator and denominator

and then we can factor it

[tex]4x^3-10x^2+6x=2x(2x^2-5x+3)[/tex]

[tex]4x^3-10x^2+6x=2x(2x+1)(x-3)[/tex]

now, we can factor denominator

[tex]2x^3+x^2-3x=x(2x^2+x-3)[/tex]

[tex]2x^3+x^2-3x=x(x-1)(2x+3)[/tex]

now, we can replace it

[tex]\frac{4x^3-10x^2+6x}{2x^3+x^2-3x}=\frac{2x(2x+1)(x-3)}{x(x-1)(2x+3)}[/tex]

we can see that

both terms are having x common

so, x can be cancelled

So,

x can be cancelled