Respuesta :

Answer:

Part 8) [tex]v=8\sqrt{3}\ units[/tex] and [tex]u=16\ units[/tex]

Partt 9) [tex]x=5\sqrt{3}\ units[/tex] and [tex]y=5\ units[/tex]

Part 10) [tex]x=8\sqrt{3}\ units[/tex] and [tex]y=4\sqrt{3}\ units[/tex]

Part 11) [tex]a=22\ units[/tex] and [tex]b=11\ units[/tex]

Step-by-step explanation:

Part 8) we know that

Find the value of v

[tex]tan(60\°)=\frac{v}{8}[/tex]

solve for v

[tex]v=8*tan(60\°)=8\sqrt{3}\ units[/tex]

Find the value of u

[tex]cos(60\°)=\frac{8}{u}[/tex]

solve for u

[tex]u=\frac{8}{cos(60\°)}=\frac{8}{(1/2)}=16\ units[/tex]

Part 9) we know that      

Find the value of y

[tex]cos(60\°)=\frac{y}{10}[/tex]

solve for y

[tex]y=10*cos(60\°)=5\ units[/tex]

Find the value of x

[tex]tan(60\°)=\frac{x}{5}[/tex]

solve for x

[tex]x=5*tan(60\°)=5\sqrt{3}\ units[/tex]

Part 10) we know that

Find the value of y

[tex]tan(30\°)=\frac{y}{12}[/tex]

solve for y

[tex]y=12*tan(30\°)=4\sqrt{3}\ units[/tex]

Find the value of x

[tex]cos(30\°)=\frac{12}{x}[/tex]  

solve for x

[tex]x=\frac{12}{cos(30\°)}=8\sqrt{3}\\ units[/tex]      

Part 11) we know that

Find the value of a

[tex]cos(30\°)=\frac{11\sqrt{3}}{a}[/tex]

solve for a

[tex]a=\frac{11\sqrt{3}}{cos(30\°)}=22\ units[/tex]  

Find the value of b

[tex]sin(30\°)=\frac{b}{22}[/tex]

solve for b

[tex]b=22*sin(30\°)=11\ units[/tex]