Hw 43 special right triangles

Answer:
Part 8) [tex]v=8\sqrt{3}\ units[/tex] and [tex]u=16\ units[/tex]
Partt 9) [tex]x=5\sqrt{3}\ units[/tex] and [tex]y=5\ units[/tex]
Part 10) [tex]x=8\sqrt{3}\ units[/tex] and [tex]y=4\sqrt{3}\ units[/tex]
Part 11) [tex]a=22\ units[/tex] and [tex]b=11\ units[/tex]
Step-by-step explanation:
Part 8) we know that
Find the value of v
[tex]tan(60\°)=\frac{v}{8}[/tex]
solve for v
[tex]v=8*tan(60\°)=8\sqrt{3}\ units[/tex]
Find the value of u
[tex]cos(60\°)=\frac{8}{u}[/tex]
solve for u
[tex]u=\frac{8}{cos(60\°)}=\frac{8}{(1/2)}=16\ units[/tex]
Part 9) we know that
Find the value of y
[tex]cos(60\°)=\frac{y}{10}[/tex]
solve for y
[tex]y=10*cos(60\°)=5\ units[/tex]
Find the value of x
[tex]tan(60\°)=\frac{x}{5}[/tex]
solve for x
[tex]x=5*tan(60\°)=5\sqrt{3}\ units[/tex]
Part 10) we know that
Find the value of y
[tex]tan(30\°)=\frac{y}{12}[/tex]
solve for y
[tex]y=12*tan(30\°)=4\sqrt{3}\ units[/tex]
Find the value of x
[tex]cos(30\°)=\frac{12}{x}[/tex]
solve for x
[tex]x=\frac{12}{cos(30\°)}=8\sqrt{3}\\ units[/tex]
Part 11) we know that
Find the value of a
[tex]cos(30\°)=\frac{11\sqrt{3}}{a}[/tex]
solve for a
[tex]a=\frac{11\sqrt{3}}{cos(30\°)}=22\ units[/tex]
Find the value of b
[tex]sin(30\°)=\frac{b}{22}[/tex]
solve for b
[tex]b=22*sin(30\°)=11\ units[/tex]