Respuesta :

Answer:

[tex]\frac{1}{3\sqrt{2} } (1+i)[/tex]

Step-by-step explanation:

Given are two complex numbers as

z1 = 3 (cos 135+isin 135)

z2 = 9(cos 45+isin45)

To find quotient

We can use Demoivre theorem for products and quotients here

[tex]\frac{z1}{z2} =\frac{3(cos135+isin135)}{9(cos45+isin45)} \\=\frac{1}{3} (cos135-90+isin 135-90)\\=\frac{1}{3} (cos45 +isin 45)\\=\frac{1}{3\sqrt{2} } (1+i)[/tex]

Answer:

Quotient is i/3.

Step-by-step explanation:

Given:

Complex numbers are 3( cos 135° + i sin 135° )   and 9( cos 45° + i sin 45° )

To find: Quotient of the given complex number.

Consider,

[tex]\frac{3(cos\,135+i\:sin\,135)}{9(cos\,45+i\:sin\,45)}[/tex]

[tex]\frac{3}{9}\times\frac{cos\,135+i\:sin\,135}{cos\,45+i\:sin\,45}[/tex]

[tex]=\frac{1}{3}\times\frac{cos\,135+i\:sin\,135}{cos\,45+i\:sin\,45}\times\frac{cos\,45-i\:sin\,45}{cos\,45-\:sin\,45)}[/tex]

[tex]=\frac{1}{3}\times\frac{(cos\,135+i\:sin\,135)(cos\,45-i\:sin\,45)}{(cos\,45-i\:sin\,45)(cos\,45+\:sin\,45)}[/tex]

[tex]=\frac{1}{3}\times\frac{(cos\,135\:cos\,45+sin\,135\:sin\,45+i(sin\,135\:cos\,45-cos\,135\:\:sin\,45)}{cos^2\,45-(i\:sin45)^2}[/tex]

using, cos A cos B + sin A sin B = cos( A - B ) and sin A cos B - cos A sin B = sin( A - B )

[tex]=\frac{1}{3}\times\frac{cos\,(135-45)+i\:sin\,(135-45)}{cos^2\,45-(-1)sin^2\,45}[/tex]

[tex]=\frac{1}{3}\times\frac{cos\,90+i\:sin\,90}{cos^2\,45+sin^2\,45}[/tex]

[tex]=\frac{1}{3}\times\frac{0+i}{1}[/tex]

[tex]=\frac{i}{3}[/tex]

Therefore, Quotient is i/3.