Respuesta :
Hello!
The answer is:
[tex]x1=0.53\\x2=-0.17[/tex]
Why?
The quadratic formula is:
[tex]x=\frac{-b+-\sqrt{b^{2}-4*a*c } }{2*a}[/tex]
We have that:
[tex]a=11\\b=-4\\c=-1[/tex]
By substituting we have:
[tex]x=\frac{4+-\sqrt{-4^{2}-4*11*-1 } }{2*11}=\frac{4+-\sqrt{16+44} }{22}=\frac{4+-\sqrt{60} }{22}=\frac{4+-(7.75)}{22}[/tex]
[tex]x1=\frac{4+7.75}{22}=0.53\\\\x2=\frac{4-7.75}{22} =-0.17[/tex]
Have a nice day!
Answer:
x= 0.53 and x = -0.63
Step-by-step explanation:
Quadratic formula:- ax² + bx + c
x = [-b ± √(b² - 4ac)]/2
It is given that, quadratic equation 11x2 – 4x = 1
To find the value of x
11x2 – 4x = 1
⇒11x2 – 4x - 1 = 0
a = 11
b = -4
c = -1
x = [-b ± √(b² - 4ac)]/2
x = [-(-4) ± √((-4)² - 4*11*-1)]/2*11
x = [4±√(16 +44)]/22
x = [4±√(60)]/22
x = [4±7.7]/22
x= 0.53 and x = -0.63