Respuesta :

Answer:

The graph of the given function is shown below.

Step-by-step explanation:

The given function is

[tex]\frac{1}{2}y=\sin (3x+180)[/tex]

Multiply both sides by 2.

[tex]y=2\sin (3x+180)[/tex]      ....(1)

The general form of sine function is

[tex]f(x)=a\sin(bx+c)+d[/tex]    ....(2)

Where, a is altitude, b is period, c is phase shift and d is vertical shift.

On comparing (1) and (2), we get

[tex]a=2,b=3,c=180[/tex]

it means the altitude of the function is 2, period is 3 and phase shift is 180.

The graph of the given function is shown below.

Ver imagen DelcieRiveria

Answer:

Graph is shown below

Step-by-step explanation:

We have the function, [tex]\frac{1}{2}y=sin(3x+180)[/tex]

That is, [tex]y=2sin(3x+180)[/tex]

We see that,

If a function f(x) has period P, then cf(bx) will have period [tex]\frac{P}{|b|}[/tex].

Since, the [tex]y=\sin x[/tex] has period [tex]2\pi[/tex], then the given function have period [tex]\frac{2\pi}{3}[/tex].

The given sine function has period [tex]\frac{2\pi}{3}[/tex] and amplitude 2.

Hence, the graph of the function is shown below.

Ver imagen wagonbelleville