Respuesta :

gmany

Answer:

[tex]\large\boxed{C)\ \dfrac{8}{5}\pi\ cm}[/tex]

Step-by-step explanation:

The formula of an area of a circle:

[tex]A_O=\pi r^2[/tex]

The formula of a perimeter of a circle:

[tex]P_O=2\pi r[/tex]

r - radius

We have the area of a circle

[tex]A_O=\dfrac{16}{25}\pi\ cm^2[/tex]

Substitute:

[tex]\pi r^2=\dfrac{16}{25}\pi[/tex]     divdie both sides by π

[tex]r^2=\dfrac{16}{25}\to r=\sqrt{\dfrac{16}{25}}\\\\r=\dfrac{\sqrt{16}}{\sqrt{25}}\\\\r=\dfrac{4}{5}\ cm[/tex]

Calculate the perimeter:

[tex]P_O=2\pi\left(\dfrac{4}{5}\right)=\dfrac{8}{5}\pi[/tex]