Respuesta :

Answer:

Yes it is a perfect square trinomial

Step-by-step explanation:

∵ The rule of the perfect square:

The first term has a square root

The last term has a square root

The middle term ÷ 2 = the √of first term × The √of last term

  (x)² ± 2(x)(y) +(y)² =  (x ± y)²

∵ [tex]16x^{2}-56xy^{2}+49y^{4}[/tex]

∵ [tex]\sqrt{16x^{2}}=4x[/tex]

∵ [tex]\sqrt{49y^{4}}=7y^{2}[/tex]

∵ 4x × 7y² × 2 = 56xy²

∴ [tex]16x^{2}-56xy^{2}+49y^{4} is a perfect square

∴ The factorization of it is (4x - 7y²)(4x - 7y²) = (4x - 7y²)²