bm42400
contestada

Determine the equations of the vertical and horizontal asymptotes, if any, for y=x^3/(x-2)^4


a) x=2, y=0

b) x=2

c) x=2, x=-2

d) x=2, y=1

Determine the equations of the vertical and horizontal asymptotes if any for yx3x24 a x2 y0 b x2 c x2 x2 d x2 y1 class=

Respuesta :

Answer:

Option a)

Step-by-step explanation:

To get the vertical asymptotes of the function f(x) you must find the limit when x tends k of f(x). If this limit tends to infinity then x = k is a vertical asymptote of the function.

[tex]\lim_{x\to\\2}\frac{x^3}{(x-2)^4} \\\\\\lim_{x\to\\2}\frac{2^3}{(2-2)^4}\\\\\lim_{x\to\\2}\frac{2^3}{(0)^4} = \infty[/tex]

Then. x = 2 it's a vertical asintota.

To obtain the horizontal asymptote of the function take the following limit:

[tex]\lim_{x \to \infty}\frac{x^3}{(x-2)^4}[/tex]

if [tex]\lim_{x \to \infty}\frac{x^3}{(x-2)^4} = b[/tex] then y = b is horizontal asymptote

Then:

[tex]\lim_{x \to \infty}\frac{x^3}{(x-2)^4} \\\\\\lim_{x \to \infty}\frac{1}{(\infty)} = 0[/tex]

Therefore y = 0 is a horizontal asymptote of f(x).

Then the correct answer is the option a) x = 2, y = 0

ANSWER

The correct answer is A.

EXPLANATION

The given function is,

[tex]y = \frac{ {x}^{3} }{ {(x - 2)}^{4} } [/tex]

To find the vertical asymptote, we equate the denominator to zero.

This implies that,

[tex] {(x - 2)}^{4} = 0[/tex]

[tex]x - 2 = 0[/tex]

[tex]x = 2[/tex]

To find the horizontal asymptote,we take limit to infinity.

[tex] lim_{x\rightarrow \infty} \frac{ {x}^{3} }{ {(x - 2)}^{4} } =0[/tex]

The horizontal asymptotes is

[tex]y=0[/tex]