PLEASE HELP IF POSSIBLE!!
4. Which similarity postulate or theorem proves the triangles are similar? (1 point)

5. What are the congruent angles and/or proportional segments that justify the answer in number 4?

Note- Picture is attached and the answer IS NOT the hypotenuse leg theorem

PLEASE HELP IF POSSIBLE 4 Which similarity postulate or theorem proves the triangles are similar 1 point 5 What are the congruent angles andor proportional segm class=

Respuesta :

Answer:

Part 4) AA Similarity Postulate

Part 5)

The congruent angles are

m<ACB=m<CED , m<ABC=m<CDE, m<BAC=m<DCE

The proportional segments are

[tex]\frac{AB}{DC}=\frac{BC}{DE}=\frac{AC}{CE}[/tex]

Step-by-step explanation:

Part 4) we know that

If BC is parallel to DE

then

Triangles ABC and CDE are similar by AA Similarity Postulate ( the three interior angles are congruent)

so

m<ACB=m<CED ------> by corresponding angles

m<ABC=m<CDE -----> both angles measure is 90 degrees

m<BAC=m<DCE -----> the sum of the interior angles of a triangle must be equal to 180 degrees

If two figures are similar, then the ratio of its corresponding sides is equal

so

[tex]\frac{AB}{DC}=\frac{BC}{DE}=\frac{AC}{CE}[/tex]

substitute the values

[tex]\frac{6}{4}=\frac{8}{DE}=\frac{AC}{CE}[/tex]

Find DE

[tex]\frac{6}{4}=\frac{8}{DE}[/tex]

[tex]DE=8*4/6=16/3\ units[/tex]

In the triangle ABC

Applying Pythagoras Theorem

Find AC

[tex]AC^{2}=AB^{2}+BC^{2}[/tex]

[tex]AC^{2}=6^{2}+8^{2}[/tex]

[tex]AC^{2}=100[/tex]

[tex]AC=10\ units[/tex]

Find CE

[tex]\frac{6}{4}=\frac{AC}{CE}[/tex]

[tex]\frac{6}{4}=\frac{10}{CE}[/tex]

[tex]CE=10*4/6=20/3\ units[/tex]