Respuesta :

Answer:

NO = 10 and OP = 18

Step-by-step explanation:

Given: KM = 48 , LD = 16 , NO : OP = 5 : 9 and NOPS is rectangle.

To find: Value of NO and OP

Let the value of NO and OP = 5x and 9x

frst we prove ΔKLD is similar to ΔKON and ΔMLD is similar to ΔMPS

In ΔKLD and ΔKON

   ∠KDL   =   ∠KNO = 90° ( corresponding angles )

   ∠DKL    =   ∠NKO   ( common Angle )

ΔKLD is similar to ΔKON by AA similarity rule.

⇒ [tex]\frac{KD}{KN}=\frac{LD}{ON}[/tex]

subtract 1 from both sides

⇒ [tex]\frac{KD}{KN}-1=\frac{LD}{ON}-1[/tex]

⇒ [tex]\frac{KD-KN}{KN}=\frac{LD-ON}{ON}[/tex]

by substituting value from figure,

⇒ [tex]\frac{ND}{KN}=\frac{16-5x}{5x}[/tex]

⇒ [tex]ND=(\frac{16-5x}{5x})\times KN[/tex] ..................... (1)

In ΔMLD and ΔMPS

   ∠MDL   =   ∠MSP = 90° ( corresponding angles )

   ∠DML    =   ∠SMP   ( common Angle )

ΔMLD is similar to ΔMPS by AA similarity rule.

⇒ [tex]\frac{MD}{SM}=\frac{LD}{PS}[/tex]

subtract 1 from both sides

⇒ [tex]\frac{MD}{SM}-1=\frac{LD}{PS}-1[/tex]

⇒ [tex]\frac{MD-SM}{SM}=\frac{LD-PS}{PS}[/tex]

by sustituting value from figure,

⇒ [tex]\frac{DS}{SM}=\frac{16-5x}{5x}[/tex]

⇒ [tex]DS=(\frac{16-5x}{5x})\times SM[/tex] ..................... (2)

Add eqn. (1) & (2), we get

[tex]ND+DS=(\frac{16-5x}{5x})\times KN + (\frac{16-5x}{5x})\times SM[/tex]

[tex]NS=(\frac{16-5x}{5x})(KN+SM)[/tex]

[tex]NS=(\frac{16-5x}{5x})(KM-NS)[/tex] ( from figure KN + SM = KM - NS)

substitute given values,

[tex]9x=(\frac{16-5x}{5x})(48-9x)[/tex]

[tex]9x \times 5x=16\times48+16\times(-9x)-5x\times48-5x\times(-9x)[/tex]

[tex]45x^2=768-144x-240x+45x^2[/tex]

[tex]45x^2-45x^2=768-384x[/tex]

[tex]768-384x=0[/tex]

[tex]384x=768[/tex]

[tex]x=\frac{768}{384}[/tex]

x = 2

NO = 5x = 5 × 2 = 10

OP = 9x = 9 × 2 = 18