Simplify the expression 3x(x-12x)+3x^2-2(x-2)^2.which statements Are true about the process and simplified product check all that apply

Respuesta :

Answer:

-8 (4 x^2 - x + 1)

Step-by-step explanation:

Simplify the following:

3 x (x - 12 x) + 3 x^2 - 2 (x - 2)^2

x - 12 x = -11 x:

3 x×-11 x + 3 x^2 - 2 (x - 2)^2

3 x (-11) x = 3 x^2 (-11):

-11×3 x^2 + 3 x^2 - 2 (x - 2)^2

3 (-11) = -33:

-33 x^2 + 3 x^2 - 2 (x - 2)^2

3 x^2 - 33 x^2 = -30 x^2:

-30 x^2 - 2 (x - 2)^2

(x - 2) (x - 2) = (x) (x) + (x) (-2) + (-2) (x) + (-2) (-2) = x^2 - 2 x - 2 x + 4 = x^2 - 4 x + 4:

-30 x^2 - 2 x^2 - 4 x + 4

-2 (x^2 - 4 x + 4) = -2 x^2 + 8 x - 8:

-2 x^2 + 8 x - 8 - 30 x^2

Grouping like terms, -2 x^2 - 30 x^2 + 8 x - 8 = (-30 x^2 - 2 x^2) + 8 x - 8:

(-30 x^2 - 2 x^2) + 8 x - 8

-30 x^2 - 2 x^2 = -32 x^2:

-32 x^2 + 8 x - 8

Factor -8 out of -32 x^2 + 8 x - 8:

Answer:  -8 (4 x^2 - x + 1)