Answer:
D.[tex]\triangle ABD\cong \triangle CBD[/tex].
Step-by-step explanation:
Given
In triangle ABC a line segment AB is congruent to line segment BC.
Given: [tex]\overline{ AB} \cong \overline{BC}[/tex]
To prove that the base angles of an isosceles triangle are congruent.
i.e [tex]\angle BAC\cong \angle BCA[/tex]
1.Statement: Segment BD is an angle bisector of [tex]\angle ABC[/tex]
Reason: By construction.
2.Statement: [tex]\angle ABD\cong \angle CBD[/tex]
Reason: By definition of an angle bisector.
3.Statement: [tex]\overline{BD}\cong \overline{BD}[/tex]
Reason: Reflexive property .
4. Statement: [tex]\triangle ABD\cong \traingle CBD[/tex]
Reason: Side-Angle-Side(SAS)
Postulate
5.Statement:[tex]\angle BAC\cong \angle BCA[/tex]
Reason: CPCT.
Hence proved.