contestada

the length of a rectangle is 10 more than it’s width. If the area of the rectangle is 52yd^2 , find the appropriate width.

the length of a rectangle is 10 more than its width If the area of the rectangle is 52yd2 find the appropriate width class=

Respuesta :

Answer:

The width is [tex](-5+\sqrt{77})\ yd[/tex]

Step-by-step explanation:

Let

x-----> the length of rectangle

y-----> the width of rectangle

we know that

The area of rectangle is equal to

[tex]A=xy[/tex]

[tex]A=52\ yd^{2}[/tex]

so

[tex]52=xy[/tex] ------> equation A

[tex]x=y+10[/tex] -----> equation B

substitute equation B in equation A

[tex]52=(y+10)y[/tex]

[tex]y^{2}+10y-52=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]y^{2}+10y-52=0[/tex]

so

[tex]a=1\\b=10\\c=-52[/tex]

substitute in the formula

[tex]y=\frac{-10(+/-)\sqrt{10^{2}-4(1)(-52)}} {2(1)}[/tex]

[tex]y=\frac{-10(+/-)\sqrt{308}} {2}[/tex]

[tex]y1=\frac{-10(+)2\sqrt{77}}{2}[/tex]  -------> the solution is the positive value

[tex]y2=\frac{-10(-)2\sqrt{77}}{2}[/tex]

The width is [tex]\frac{-10(+)2\sqrt{77}}{2}\ yd=(-5+\sqrt{77})\ yd[/tex]

The answers to the Math Nation should be

1.58 seconds

10 inches

3.775 yards