When 36 g of a metal at 86 ◦C is added to
41 g of water at 30 ◦C, the temperature of the
water rises to 36 ◦C. What is the specific heat
capacity of the metal? Assume no heat was
lost to the surroundings.
Answer in units of J/g ·◦C
.

Respuesta :

is there any answer choices

Answer:

0.57J/g°C is the specific heat  capacity of the metal.

Explanation:

Heat lost by metal will be equal to heat gained by the water

[tex]-Q_1=Q_2[/tex]

Mass of metal= [tex]m_1=36 g[/tex]

Specific heat capacity of metal= [tex]c_1=?[/tex]

Initial temperature of the metal= [tex]T_1=86^oC[/tex]

Final temperature = [tex]T_2=T=36^oC[/tex]

[tex]Q_1=m_1c_1\times (T-T_1)[/tex]

Mass of water= [tex]m_2=41 g[/tex]

Specific heat capacity of water= [tex]c_2=4.18 J/g^oC [/tex]

Initial temperature of the water = [tex]T_3=30^oC[/tex]

Final temperature of water = [tex]T_2=36^oC[/tex]

[tex]Q_2=m_2c_2\times (T-T_3)[/tex]

[tex]-Q_1=Q_2[/tex]

[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]

On substituting all values:

[tex]-(36 g\times c_1\times (36^oC-86^oC))=41 g\times 4.18 J/g^oC\times (36^oC-30^oC)[/tex]

we get, [tex]c_2 =0.57J/g^oC[/tex]

0.57J/g°C is the specific heat  capacity of the metal.