Respuesta :
Answer:
[tex]y=\frac{1}{5}x+2[/tex]
Step-by-step explanation:
Given : (5, 3) and (20, 6).
To Find: the linear approximation of the data that passes through the points (5, 3) and (20, 6).
Solution:
We are given the two points (5, 3) and (20, 6).
Now to find equation of line we will use two point slope form.
Formula : [tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(5,3)[/tex]
[tex](x_2,y_2)=(20,6)[/tex]
Substitute the values in the formula .
[tex]y-3=\frac{6-3}{20-5}(x-5)[/tex]
[tex]y-3=\frac{3}{15}(x-5)[/tex]
[tex]y-3=\frac{1}{5}(x-5)[/tex]
[tex]y-3=\frac{1}{5}x-1[/tex]
[tex]y=\frac{1}{5}x-1+3[/tex]
[tex]y=\frac{1}{5}x+2[/tex]
Hence the linear approximation of the data that passes through the points (5, 3) and (20, 6) is [tex]y=\frac{1}{5}x+2[/tex]