Respuesta :

Answer:

Option C.

Step-by-step explanation:

Let [tex]f(x) = x ^ 2[/tex] be a quadratic function

Then we do the function [tex]y = f(bx) = (bx) ^ 2[/tex]

Where b is a real number.

If [tex]b> 1[/tex] then the function [tex]y = (bx) ^ 2[/tex] represents a horizontal compression of the function [tex]y = x ^ 2[/tex]  

If  [tex]0 <b <1[/tex] Then the function [tex]y = (bx) ^ 2[/tex] represents a horizontal expansion compression of the function [tex]y = x ^ 2[/tex] by a factor of [tex]\frac{1}{b}[/tex]

In this case, the equation is:

[tex]y = (0.2x) ^ 2[/tex] Then:

[tex]b = 0.2[/tex]

[tex]0 <b <1[/tex]

Thus

[tex]y = (0.2x) ^ 2[/tex] is a horizontal expansion of the function [tex]y = x ^ 2[/tex] by a factor of [tex]\frac{1}{0.2} = 5[/tex].

The correct option is: Option C