Given the parent function f(x) = x^2 describe the translation of the function y=(.2x)^2?

Answer:
Option C.
Step-by-step explanation:
Let [tex]f(x) = x ^ 2[/tex] be a quadratic function
Then we do the function [tex]y = f(bx) = (bx) ^ 2[/tex]
Where b is a real number.
If [tex]b> 1[/tex] then the function [tex]y = (bx) ^ 2[/tex] represents a horizontal compression of the function [tex]y = x ^ 2[/tex]
If [tex]0 <b <1[/tex] Then the function [tex]y = (bx) ^ 2[/tex] represents a horizontal expansion compression of the function [tex]y = x ^ 2[/tex] by a factor of [tex]\frac{1}{b}[/tex]
In this case, the equation is:
[tex]y = (0.2x) ^ 2[/tex] Then:
[tex]b = 0.2[/tex]
[tex]0 <b <1[/tex]
Thus
[tex]y = (0.2x) ^ 2[/tex] is a horizontal expansion of the function [tex]y = x ^ 2[/tex] by a factor of [tex]\frac{1}{0.2} = 5[/tex].
The correct option is: Option C