Respuesta :

Answer:

[tex]807\ rev[/tex]

Step-by-step explanation:

we know that

The length of the circumference of a circle represent one revolution

so

The circumference of a circle is equal to

[tex]C=\pi D[/tex]

we have

[tex]D=25\ in[/tex]

substitute

[tex]C=\pi (25)=25\pi\ in[/tex]

Remember that

[tex]1\ mi=63,360\ in[/tex]

so

by proportion

Find how many full revolutions does a car tire make when the car travels one mile

[tex]\frac{1}{25\pi}\frac{rev}{in}=\frac{x}{63,360}\frac{rev}{in}\\ \\x=63,360/(25\pi)\\ \\x=806.7\ rev[/tex]

Round to the nearest whole number

[tex]806.7\ rev=807\ rev[/tex]

Answer:

A car tire makes 807complete revolutions when it travels 1 mile.

Step-by-step explanation:

Diameter of tire = d = 25 inches

Radius of the tire = r = [tex]\frac{d}{2}=\frac{25 inche}{2}=12.5 inches[/tex]

Circumference of circle = 2πr

Circumference of tire = [tex]2\times 3.14\times 12.5 inches = 78.5 inches[/tex]

1 mile = 63,360 inches

In single revolution tire, tire covers 78.5 inches.

let number of revolution in 1 mile x.

[tex]63,360 inch=x\times 78.5 inch[/tex]

[tex]x=\frac{63,360 inch}{78.5 inch}=807.13\approx 807[/tex]

A car tire makes 807complete revolutions when it travels 1 mile.