Respuesta :
Answer:
[tex]807\ rev[/tex]
Step-by-step explanation:
we know that
The length of the circumference of a circle represent one revolution
so
The circumference of a circle is equal to
[tex]C=\pi D[/tex]
we have
[tex]D=25\ in[/tex]
substitute
[tex]C=\pi (25)=25\pi\ in[/tex]
Remember that
[tex]1\ mi=63,360\ in[/tex]
so
by proportion
Find how many full revolutions does a car tire make when the car travels one mile
[tex]\frac{1}{25\pi}\frac{rev}{in}=\frac{x}{63,360}\frac{rev}{in}\\ \\x=63,360/(25\pi)\\ \\x=806.7\ rev[/tex]
Round to the nearest whole number
[tex]806.7\ rev=807\ rev[/tex]
Answer:
A car tire makes 807complete revolutions when it travels 1 mile.
Step-by-step explanation:
Diameter of tire = d = 25 inches
Radius of the tire = r = [tex]\frac{d}{2}=\frac{25 inche}{2}=12.5 inches[/tex]
Circumference of circle = 2πr
Circumference of tire = [tex]2\times 3.14\times 12.5 inches = 78.5 inches[/tex]
1 mile = 63,360 inches
In single revolution tire, tire covers 78.5 inches.
let number of revolution in 1 mile x.
[tex]63,360 inch=x\times 78.5 inch[/tex]
[tex]x=\frac{63,360 inch}{78.5 inch}=807.13\approx 807[/tex]
A car tire makes 807complete revolutions when it travels 1 mile.