Answer:
See graph
Step-by-step explanation:
We want to graph [tex]y=\frac{1}{2}\cos(2x+60\degree)[/tex] on the interval [tex]-360\degree \le x \le 360\degree[/tex]
We need to plot some few points
[tex](-30\degree,\frac{1}{2})[/tex]
[tex](-15\degree,\frac{\sqrt{3}}{4})[/tex]
[tex](0\degree,\frac{1}{4})[/tex]
[tex](15\degree,0)[/tex]
[tex](30\degree,-\frac{1}{4})[/tex]
[tex](45\degree,-\frac{\sqrt{3}}{4})[/tex]
[tex](60\degree,-\frac{1}{2})[/tex]
[tex](75\degree,-\frac{\sqrt{3}}{4})[/tex]
[tex](90\degree,-\frac{1}{4})[/tex]
[tex](105\degree,0)[/tex]
[tex](120\degree,\frac{1}{4})[/tex]
[tex](135\degree,\frac{\sqrt{3}}{4})[/tex]
[tex](150\degree,\frac{1}{2})[/tex]
This will give us one cycle.
We then use the pattern to complete the graph on the interval
[tex]-360\degree \le x \le 360\degree[/tex]