Respuesta :

Answer:

The value of k is 2

Step-by-step explanation:

[tex]\frac{x^{2}-3x }{x^{2}+kx-15 }=\frac{x(x-3)}{(x-?)(x+5)}[/tex]

∵ The answer is [tex]\frac{x}{(x+5)}[/tex] means (x - 3) in the numerator is canceled with another one in the denominator

∴ [tex]\frac{x(x-3)}{(x-3)(x+5)}[/tex]

∵ (x - 3)(x + 5) = x² + 5x - 3x -15 = x² + 2x -15

∴ k = 2