Respuesta :

Answer:

The slope is [tex]\frac{10}{3}[/tex]

Step-by-step explanation:

Let [tex](x_1,y_1)=(-2,15)[/tex] and [tex](x_2,y_2)=(-8,-5)[/tex].

We calculate the slope using the formula;

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

We substitute the values into the formula to get;

[tex]m=\frac{-5-15}{-8--2}[/tex]

[tex]m=\frac{-20}{-6}[/tex]

[tex]m=\frac{10}{3}[/tex]

Answer:

D.  slope  =   10 / 3

Step-by-step explanation:

We have given two points.

(-2,15) and (-8, -5)

We have to find the slope of the line that passes through the given points.

Let (x₁,y₁) =  (-2,15) and (x₂,y₂)  =   (-8, -5)

The formula to find the slope is:

Slope  =  m  = y₂-y₁ / x₂-x₁

Putting the given values in above formula, we have

Slope  =   -5-15 / -8-(-2)

Slope  =   -20 / -8+2

Slope  =   -20 / -6

Slope =  20 / 6

Slope  =   10 / 3

Hence, the slope of  the line is 10/3 that passes through the points (-2,15) and (-8, -5).