Respuesta :

Hello!

The answer is:

[tex]Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73[/tex]

Why?

Since it's a right triangle, and we have the adjacent and opposite sides size ([tex]\sqrt{37}[/tex]), we can solve it using following the next steps:

Tan(u),

We can find the tangent using the following formula:

[tex]tan(u)=\frac{OppositeSide}{AdjacentSide}= \frac{\sqrt{111} }{\sqrt{37}}=\frac{10.54}{6.08}\\tan(u)=1.73[/tex]

Sin(u),

To find the sin(u) we need first to find the hypotenuse of the triangle using the Pythagorean Theorem, so:

[tex]c=\sqrt{a^{2}+b^{2}}[/tex]

Where:

[tex]c=hypotenuse\\a=FirstTriangleSide\\b=SecondTriangleSide[/tex]

Substituting we have:

[tex]hypotenuse=\sqrt{\sqrt{37}^{2}+\sqrt{111}^{2}}[/tex]

[tex]hypotenuse=\sqrt{37+111}=\sqrt{148}=12.17[/tex]

Then, we can calculate the sin(u) using the following formula:

[tex]Sin(u)\frac{OppositeSide}{Hypotenuse}=\frac{\sqrt{111} }{12.17}=0.86[/tex]

Finally, we can calculate the cos(u) by using the following formula:

Cos(u),

[tex]cos(u)=\frac{AdjacentSide}{Hypotenuse}=\frac{\sqrt{37} }{12.17}=0.50[/tex]

Hence,

We have that:

[tex]Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73[/tex]

Have a nice day!

Answer:

Part a) [tex]sin(U)=0.87[/tex]

Part b) [tex]cos(U)=0.50[/tex]

Part c)  [tex]tan(U)=1.73[/tex]

Step-by-step explanation:

step 1

we know that

In the right triangle UST

Applying the Pythagoras Theorem

Find the length side UT

[tex]UT^{2}=(\sqrt{37})^{2}+(\sqrt{111})^{2}[/tex]

[tex]UT^{2}=37+111[/tex]

[tex]UT=\sqrt{148}\ units[/tex]

step 2

Find the sin(U)

we know that

The sine of angle U is the opposite side angle U divided by the hypotenuse

[tex]sin(U)=\frac{ST}{UT}[/tex]

substitute the values

[tex]sin(U)=\frac{\sqrt{111}}{\sqrt{148}}=0.87[/tex]

step 3

Find the cos(U)

we know that

The cosine of angle U is the adjacent side angle U divided by the hypotenuse

[tex]cos(U)=\frac{US}{UT}[/tex]

substitute the values

[tex]cos(U)=\frac{\sqrt{37}}{\sqrt{148}}=0.50[/tex]

step 4

Find the tan(U)

we know that

The tangent of angle U is the opposite side angle U divided by the adjacent side angle U

[tex]tan(U)=\frac{ST}{US}[/tex]

substitute the values

[tex]tan(U)=\frac{\sqrt{111}}{\sqrt{37}}=1.73[/tex]