Help please!!!!!!!!!!!!!!

The answer is:
[tex]Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73[/tex]
Since it's a right triangle, and we have the adjacent and opposite sides size ([tex]\sqrt{37}[/tex]), we can solve it using following the next steps:
Tan(u),
We can find the tangent using the following formula:
[tex]tan(u)=\frac{OppositeSide}{AdjacentSide}= \frac{\sqrt{111} }{\sqrt{37}}=\frac{10.54}{6.08}\\tan(u)=1.73[/tex]
Sin(u),
To find the sin(u) we need first to find the hypotenuse of the triangle using the Pythagorean Theorem, so:
[tex]c=\sqrt{a^{2}+b^{2}}[/tex]
Where:
[tex]c=hypotenuse\\a=FirstTriangleSide\\b=SecondTriangleSide[/tex]
Substituting we have:
[tex]hypotenuse=\sqrt{\sqrt{37}^{2}+\sqrt{111}^{2}}[/tex]
[tex]hypotenuse=\sqrt{37+111}=\sqrt{148}=12.17[/tex]
Then, we can calculate the sin(u) using the following formula:
[tex]Sin(u)\frac{OppositeSide}{Hypotenuse}=\frac{\sqrt{111} }{12.17}=0.86[/tex]
Finally, we can calculate the cos(u) by using the following formula:
Cos(u),
[tex]cos(u)=\frac{AdjacentSide}{Hypotenuse}=\frac{\sqrt{37} }{12.17}=0.50[/tex]
Hence,
We have that:
[tex]Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73[/tex]
Have a nice day!
Answer:
Part a) [tex]sin(U)=0.87[/tex]
Part b) [tex]cos(U)=0.50[/tex]
Part c) [tex]tan(U)=1.73[/tex]
Step-by-step explanation:
step 1
we know that
In the right triangle UST
Applying the Pythagoras Theorem
Find the length side UT
[tex]UT^{2}=(\sqrt{37})^{2}+(\sqrt{111})^{2}[/tex]
[tex]UT^{2}=37+111[/tex]
[tex]UT=\sqrt{148}\ units[/tex]
step 2
Find the sin(U)
we know that
The sine of angle U is the opposite side angle U divided by the hypotenuse
[tex]sin(U)=\frac{ST}{UT}[/tex]
substitute the values
[tex]sin(U)=\frac{\sqrt{111}}{\sqrt{148}}=0.87[/tex]
step 3
Find the cos(U)
we know that
The cosine of angle U is the adjacent side angle U divided by the hypotenuse
[tex]cos(U)=\frac{US}{UT}[/tex]
substitute the values
[tex]cos(U)=\frac{\sqrt{37}}{\sqrt{148}}=0.50[/tex]
step 4
Find the tan(U)
we know that
The tangent of angle U is the opposite side angle U divided by the adjacent side angle U
[tex]tan(U)=\frac{ST}{US}[/tex]
substitute the values
[tex]tan(U)=\frac{\sqrt{111}}{\sqrt{37}}=1.73[/tex]