Respuesta :

Answer:

the answer is B

Step-by-step explanation:

Answer:

Option A)  4.4 is the correct standard deviation of the the given data set.

Step-by-step explanation:

We are given the following data set:

127, 135, 128, 131, 133, 127, 122

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

Solving:

[tex]Mean =\displaystyle\frac{903}{7} = 129[/tex]

Sum of squares of differences = 4 + 36 + 1 + 4 + 16 + 4 + 49 = 114

[tex]S.D = \sqrt{\frac{114}{6}} = 4.358898944 \approx 4.4[/tex]

Option A) is the correct standard deviation of the the given data set.