Respuesta :

Answer:

Option B. is the answer.

Step-by-step explanation:

In the  given picture we have to prove that quadrilateral HIJK is a kite.

1. For a kite quadrilateral  HIJK will be a kite, if it's sides IJ = IH

From the graph length of I H = 4 - 1 = 3 units

Length of IJ = 0 - (-3) = 3 units

Therefore, IJ = IH = 3 units

2. Sides HK should be equal to JK

Length of HK = [tex]\sqrt{[1-(-1)]^{2}+[2-(-3)^{2}[/tex] by Pythagoras Theorem

                       = [tex]\sqrt{(2)^{2}+(5)^{2}}=\sqrt{4+25}=\sqrt{29}[/tex]

Similarly length of JK = [tex]\sqrt{(2)^{2}+[4-(-1)]^{2}}=\sqrt{4+5^{2} }[/tex]

                                   = [tex]\sqrt{29}[/tex]

Therefore HK = JK = √29 units

3). IH ≠ JK and ij ≠ HK

All these conditions are fulfilled for HIJK to be a kite.

Option B. is the answer.

Answer:

B. IH = IJ = 3 and JK = HK = StartRoot 29 EndRoot, and IH ≠ JK and IJ ≠ HK.

Step-by-step explanation: