Respuesta :
Answer:
Option A is correct
[tex](kj)(x)=-16x^2-12x+10[/tex]
Step-by-step explanation:
Given the functions are as follows:
[tex]j(x) = -4x+2[/tex]
[tex]k(x) = 5+4x[/tex]
We have to find (kj)(x).
Consider,
[tex](kj)(x) = k(x)j(x)[/tex]
Substitute the given values we have;
[tex](kj)(x) = (5+4x)(-4x+2)[/tex]
Using distributive property, [tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]
[tex](kj)(x)=-20x+10-16x^2+8x[/tex]
Combine like terms;
[tex](kj)(x)=-12x+10-16x^2[/tex]
or
[tex](kj)(x)=-16x^2-12x+10[/tex]
Therefore, the function rule for (kj)(x) is, [tex]-16x^2-12x+10[/tex]