which polynomial correctly combines the like terms and expresses the given polynomial in standard form?

9xy^3 - 4y^4 - 10x^2y^2 + x^3y + 3x^4 + 2x^2y^2 -9y^4

A. -13y^4 + 3x^4 - 8x^2y^2 + x^3y + 9xy^3

B. -13y^4 + x^3y - 8x^2y^2 + 9xy^3 +3x^4

C. 3x^4 - 8x^2y^2 + x^3y + 9xy^3 - 13y^4

D. 3x^4 + x^3y - 8x^2y^2 + 9xy^3 - 13y^4

Respuesta :

your answer is D .......

The polynomial that correctly combines the like terms and to express in standard form is Option (D) [tex]3x^{4} + x^{3}y - 8x^{2}y^{2} + 9xy^{3} - 13y^{4}[/tex] .

How to solve the given expression in standard form ?

Given polynomial is -

=  [tex]9xy^{3} - 4y^{4} -10x^{2}y^{2} + x^{3}y + 3x^{4} + 2x^{2}y^{2} - 9y^{4}[/tex]

Separating the like terms from the above polynomial -

=  [tex]9xy^{3} + (-10x^{2}y^{2} + 2x^{2}y^{2})+ x^{3}y + 3x^{4}+( - 9y^{4} - 4y^{4})[/tex]

Expressing the polynomial in standard form -

=  [tex]3x^{4} + x^{3}y - 8x^{2}y^{2} + 9xy^{3} - 13y^{4}[/tex]

Therefore the polynomial that correctly combines the like terms and to express in standard form is Option (D) [tex]3x^{4} + x^{3}y - 8x^{2}y^{2} + 9xy^{3} - 13y^{4}[/tex] .

To learn more about solving polynomial expression, refer -

https://brainly.com/question/12240569

#SPJ2