Respuesta :

Answer:

[tex]x^{\frac{4}{5} }[/tex]

Step-by-step explanation:

Using the rule of exponents

[tex]a^{\frac{m}{n} }[/tex] = [tex]\sqrt[n]{x^{m} }[/tex]

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex], hence

[tex]\sqrt[5]{x}[/tex] = [tex]x^{\frac{1}{5} }[/tex], thus

[tex]x^{\frac{1}{5} }[/tex] × [tex]x^{\frac{1}{5} }[/tex] × [tex]x^{\frac{1}{5} }[/tex] × [tex]x^{\frac{1}{5} }[/tex]

= [tex]x^{\frac{4}{5} }[/tex]

Answer:

[tex] x^{\frac{4}{5} }[/tex]

Step-by-step explanation:

We are given the following expression and we are to determine its most simplified form:

[tex] \sqrt [ 5 ] { x } . \sqrt [ 5 ] { x } . \sqrt [ 5 ] { x } . \sqrt [ 5 ] { x } [/tex]

We know that [tex] \sqrt [ 5 ] { x } [/tex] [tex] = x ^ { \frac { 1 } { 5 } } [/tex]

And since we have four of these like terms so the power of x will become 4, thus making it [tex] x ^4 [/tex].

When [tex] x ^ 4 [/tex] is combined with the square root 5, we get:

[tex]x^4 \times x^{\frac{1}{5}} = x^{\frac{4}{5} }[/tex]