Respuesta :
Answer:
TRUE
Step-by-step explanation:
tanθ = 1/cotθ
cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.
∴ tanθ is undefined when θ = ±[(2n+1)/2]π.
secθ = 1/cosθ
cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.
∴ secθ is undefined when θ = ±[(2n+1)/2]π.
The tangent and secant functions are undefined for the same values of θ.
Answer:
True
Step-by-step explanation:
The tangent and secant functions are undefined for the same values.
Secant and tangent are trigonometry function. Each function has fix value for fix angle.
For angle 90° degree or [tex]\dfrac{\pi}{2}[/tex]
As we know,
[tex]\tan90^\circ=\infty[/tex]
[tex]\tan\dfrac{\pi}{2}=\infty[/tex]
[tex]\sec90^\circ=\infty[/tex]
[tex]\sec\dfrac{\pi}{2}=\infty[/tex]
True
∞ is undefined.
Hence, Both tangent and secant are undefined at 90°