Respuesta :

znk

Answer:

TRUE

Step-by-step explanation:

tanθ = 1/cotθ

cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.

∴ tanθ is undefined when θ = ±[(2n+1)/2]π.

secθ = 1/cosθ

cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.

∴ secθ is undefined when θ = ±[(2n+1)/2]π.

The tangent and secant functions are undefined for the same values of θ.

Answer:

True

Step-by-step explanation:

The tangent and secant functions are undefined for the same values.

Secant and tangent are trigonometry function. Each function has fix value for fix angle.

For angle 90° degree or [tex]\dfrac{\pi}{2}[/tex]

As we know,

[tex]\tan90^\circ=\infty[/tex]

[tex]\tan\dfrac{\pi}{2}=\infty[/tex]

[tex]\sec90^\circ=\infty[/tex]

[tex]\sec\dfrac{\pi}{2}=\infty[/tex]

True

∞ is undefined.

Hence, Both tangent and secant are undefined at 90°