Complete the square to determine the minimum or maximum value of the function defined by the expression.

x2 βˆ’ 12x βˆ’ 2

A) maximum value at 38 B) minimum value at 38 C) maximum value at βˆ’38 D) minimum value at βˆ’38

Respuesta :

Answer:

Option D. minimum value at βˆ’38

Step-by-step explanation:

we have

[tex]x^{2}-12x-2[/tex]

Let

[tex]y=x^{2}-12x-2[/tex]

Complete the square

[tex]y+2=x^{2}-12x[/tex]

[tex]y+2+36=(x^{2}-12x+36)[/tex]

[tex]y+38=(x^{2}-12x+36)[/tex]

[tex]y+38=(x-6)^{2}[/tex]

[tex]y=(x-6)^{2}-38[/tex] ------> equation of a vertical parabola in vertex form

The vertex is the point [tex](6,-38)[/tex]

The parabola open upward-----> the vertex is a minimum

therefore

minimum value at βˆ’38

Answer:

D

Step-by-step explanation:

I did the prep