Respuesta :
Answer:
Option D. minimum value at β38
Step-by-step explanation:
we have
[tex]x^{2}-12x-2[/tex]
Let
[tex]y=x^{2}-12x-2[/tex]
Complete the square
[tex]y+2=x^{2}-12x[/tex]
[tex]y+2+36=(x^{2}-12x+36)[/tex]
[tex]y+38=(x^{2}-12x+36)[/tex]
[tex]y+38=(x-6)^{2}[/tex]
[tex]y=(x-6)^{2}-38[/tex] ------> equation of a vertical parabola in vertex form
The vertex is the point [tex](6,-38)[/tex]
The parabola open upward-----> the vertex is a minimum
therefore
minimum value at β38