Find the volume of the figure: a cone with a square pyramid of the same height cut out. The pyramid has height l, and its square base has area l2.

Find the volume of the figure a cone with a square pyramid of the same height cut out The pyramid has height l and its square base has area l2 class=

Respuesta :

Answer:

The volume of the figure is [tex]\frac{l^{3}}{3}[\frac{1}{2}\pi-1]\ units^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the figure is equal to the volume of the cone minus the volume of the square pyramid

step 1

Find the volume of the cone

The volume of the cone is equal to

[tex]V=\frac{1}{3}\pi r^{2} h[/tex]

we have

[tex]r=l\frac{\sqrt{2}}{2}\ units[/tex]

[tex]h=l\ units[/tex]

substitute

[tex]V=\frac{1}{3}\pi (l\frac{\sqrt{2}}{2})^{2}l[/tex]

[tex]V=\frac{1}{3}\pi (\frac{l^{3}}{2} )[/tex]

[tex]V=\frac{1}{6}\pi (l^{3})\ units^{3}[/tex]

step 2

Find the volume of the square pyramid

[tex]V=\frac{1}{3}Bh[/tex]

we have

[tex]B=l^{2}\ units^{2}[/tex]

[tex]h=l\ units[/tex]

substitute

[tex]V=\frac{1}{3}(l^{2})l[/tex]

[tex]V=\frac{1}{3}(l^{3})\ units^{3}[/tex]

step 3

Find the difference

[tex]\frac{1}{6}\pi (l^{3})-\frac{1}{3}(l^{3})=\frac{l^{3}}{3}[\frac{1}{2}\pi-1]\ units^{3}[/tex]