Respuesta :

Answer:

x = - 3[tex]\sqrt{2}[/tex], x = [tex]\sqrt{2}[/tex]

Step-by-step explanation:

Given

x² + 2[tex]\sqrt{2}[/tex] x - 6

To calculate the zeros equate to zero

x² + 2[tex]\sqrt{2}[/tex] x - 6 = 0 ( add 6 to both sides )

x² + 2[tex]\sqrt{2}[/tex] x = 6

One way is to use the completing the square method

add ( half the coefficient of the x- term )² to both sides

x² + 2[tex]\sqrt{2}[/tex] x + ([tex]\sqrt{2}[/tex])² = 6 + ([tex]\sqrt{2}[/tex])²

x² + 2[tex]\sqrt{2}[/tex] x + 2 = 6 + 2

(x + [tex]\sqrt{2}[/tex] )² = 8

Take the square root of both sides

x + [tex]\sqrt{2}[/tex] = ± [tex]\sqrt{8}[/tex] = ± 2[tex]\sqrt{2}[/tex]

subtract [tex]\sqrt{2}[/tex] from both sides

x = - [tex]\sqrt{2}[/tex] ± 2[tex]\sqrt{2}[/tex]

x = - [tex]\sqrt{2}[/tex] - 2[tex]\sqrt{2}[/tex] = - 3[tex]\sqrt{2}[/tex], or

x = - [tex]\sqrt{2}[/tex] + 2[tex]\sqrt{2}[/tex] = [tex]\sqrt{2}[/tex]