Respuesta :
The data for tree 1 is an illustration of a linear equation.
The linear equation that fits the data for tree 1 is: [tex]\mathbf{y = 0.3x + 18.3}[/tex]
From the complete question, we have the following points
[tex]\mathbf{(x_1,y_1) = (1,18.6)}[/tex]
[tex]\mathbf{(x_2,y_2) = (3,19.2)}[/tex]
First, we calculate the slope (m)
[tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex]
So, we have:
[tex]\mathbf{m = \frac{19.2 - 18.6}{3 -1}}[/tex]
[tex]\mathbf{m = \frac{0.6}{2}}[/tex]
[tex]\mathbf{m = 0.3}[/tex]
The equation is then calculated as:
[tex]\mathbf{y = m(x - x_1) + y_1}[/tex]
So, we have:
[tex]\mathbf{y = 0.3(x - 1) + 18.6}[/tex]
[tex]\mathbf{y = 0.3x - 0.3+ 18.6}[/tex]
[tex]\mathbf{y = 0.3x + 18.3}[/tex]
Hence, the linear equation that fits the data for tree 1 is: [tex]\mathbf{y = 0.3x + 18.3}[/tex]
Read more about linear equations at:
https://brainly.com/question/21088228