Estimate the limit
A
B
C
D

Answer:
C. [tex]\lim_{x\rightarrow f(x)=2[/tex]
Step-by-step explanation:
Given problem is [tex]\lim_{x\rightarrow \frac{\pi}{4}}\frac{tan(x)-1}{x-\frac{\pi}{4}}[/tex].
Now we need to evaluate the given limit.
If we plug [tex]\x=\frac{\pi}{4}[/tex], into given problem then we will get 0/0 form which is an indeterminate form so we can apply L Hospitals rule
take derivative of numerator and denominator
[tex]\lim_{x\rightarrow \frac{\pi}{4}}\frac{tan(x)-1}{x-\frac{\pi}{4}}[/tex]
[tex]=\lim_{x\rightarrow \frac{\pi}{4}}\frac{sec^2(x)-0}{1-0}[/tex]
[tex]=\frac{sec^2(\frac{\pi}{4})-0}{1-0}[/tex]
[tex]=\frac{(\sqrt{2})^2}{1}[/tex]
[tex]=\frac{2}{1}[/tex]
=2
Hence choice C is correct.