Respuesta :
Answer:
1. 392, 20.83, 4/3
2. 16 cm and 45 cm cone
3. 0.9 Fl oz
4. the cone still
Step-by-step explanation:
The volume of each vase can be determine by using volume formula of sphere, cone and cylinder.
(1) The volume of sphere is [tex]972\pi[/tex], volume of cone is [tex]960\pi[/tex] and volume of cylinder is [tex]1000\pi[/tex].
(2) You should purchase the cylinder vase.
(3) The largest vase hold [tex]40 \pi \:{\rm cm}^3[/tex] more than smallest vase.
(4) If the diameter decreases by 2 cm, then cone holds more water.
Given:
Diameter of cylinder is [tex]d=10 \:\rm cm[/tex].
Height of cylinder is [tex]h=40\:\rm cm[/tex].
Diameter of cone is [tex]d=16 \:\rm cm[/tex].
Height of cylinder is [tex]h=45\:\rm cm[/tex].
Diameter of sphere is [tex]d=45 \:\rm cm[/tex].
(1)
Calculate the volume of cylinder.
[tex]\begin{aligned}\mbox{Cylinder Volume} &= \pi r^2 h\\& = \pi(5)^2(40) \text{ cm}^3\\&= 1000 \pi \text{ cm}^3.\end{align}[/tex]
Calculate the volume of Cone.
[tex]\begin{aligned}\mbox{Cone Volume} &= \frac13 \pi r^2 h\\&= \frac13 \pi(8)^2(45) \text{ cm}^3\\&= 960 \pi \text{ cm}^3.\end{align}[/tex]
Calculate the volume of sphere.
[tex]\begin{aligned}\mbox{Sphere Volume} &= \frac43 \pi r^3\\&= \frac43 \pi (9)^3 \text{ cm}^3\\&= 972 \pi \text{ cm}^3.\end{align}[/tex]
(2)
Since the volume of cylinder is higher than the volume of sphere and cone. So, you should purchase cylinder vase.
(3)
The largest vase hold water more than the smallest vase is,
[tex]\text{Cylinder Volume} - \text{Cone Volume} = 1000 \pi \text{ cm}^3 - 960 \pi \text{ cm}^3 = 40 \pi \text{ cm}^3[/tex]
(4)
As per the question if diameter of each vase decreases by 2 cm then radius decreases by 1 cm.
Calculate the volume of cylinder.
[tex]\begin{aligned}\mbox{Cylinder Volume} &= \pi r^2 h\\&= \pi(4)^2(40) \text{ cm}^3\\&= 640 \pi \text{ cm}^3.\end{align}[/tex]
Calculate the volume of Cone.
[tex]\begin{aligned}\mbox{Cone Volume}&= \frac13 \pi r^2 h\\&= \frac13 \pi(7)^2(45) \text{ cm}^3\\&= 735 \pi \text{ cm}^3.\end{align}[/tex]
Calculate the volume of sphere.
[tex]\begin{aligned}\mbox{Sphere volume} &= \frac43 \pi r^3\\&= \frac43 \pi (8)^3 \text{ cm}^3\\&= 682 \frac23 \pi \text{ cm}^3.\end{align}[/tex]
Since the volume of cone is more the sphere and cylinder. So cone hold most water.
Learn more about volume here:
https://brainly.com/question/8667621