Respuesta :
Answer:
The answer is ⇒ x = 0.73244
Step-by-step explanation:
∵ 90^x = 27 ⇒ insert log in both sides
∴ [tex]log(90)^{x}=log(27)[/tex]
∵ 90 = 9 × 10 , 27 = 3³
∵ log(a)^b = b log(a)
∴ log(9 × 10)^x = x log(9 × 10)
∴ [tex]xlog(9*10)=log(3^{3})[/tex]
∵ log(a × b) = log(a) + log(b)⇒log(9 × 10) = log(9) + log(10)
∴ [tex]x[log(9)+log(10)]=3log(3)[/tex]
∵ log(10) = 1 , 9 = 3²
∴ [tex]x[log(3)^{2}+1]=3log(3)[/tex]
∴ [tex]x[2log(3)+1] = 3log(3)[/tex]
∴ x = (3log3)/[2log(3)+1]
∴ x = 0.73244
ANSWER
[tex]x \approx0.732[/tex]
EXPLANATION
The given exponential equation is
[tex] {90}^{x} = 27[/tex]
We take natural log of both sides
[tex] ln( {90}^{x} ) = ln(27) [/tex]
Recall and the following property of logarithms.
[tex] ln( {a}^{n} ) = n \: ln(a) [/tex]
This implies that;
[tex]x ln(90) = ln(27) [/tex]
Solve for x.
[tex]x = \frac{ ln(27) }{ ln(90) } [/tex]
[tex]x \approx0.732[/tex]