If $n \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{6} \cdot \frac{1}{8} \cdot \frac{1}{10}$, what is the value of $n$? Express your answer as a common fraction.

Respuesta :

[tex]n\cdot1\cdot\dfrac12\cdot\dfrac13\cdot\dfrac14\cdot\dfrac15=\dfrac n{5!}[/tex]

[tex]\dfrac12\cdot\dfrac14\cdot\dfrac16\cdot\dfrac18\cdot\dfrac1{10}=\dfrac{3\cdot5\cdot7\cdot9}{10!}[/tex]

So we have

[tex]\dfrac n{5!}=\dfrac{3\cdot5\cdot7\cdot9}{10!}[/tex]

[tex]n=\dfrac{3\cdot5\cdot7\cdot9}{6\cdot7\cdot8\cdot9\cdot10}[/tex]

[tex]n=\dfrac{3\cdot5}{6\cdot8\cdot10}[/tex]

[tex]n=\dfrac1{2\cdot8\cdot2}[/tex]

[tex]n=\dfrac1{32}[/tex]

Answer:

3

Step-by-step explanation:

trust me , it worked