Respuesta :

Answer:

[tex]\boxed{\bold{\frac{m^2}{\left(m+n\right)\left(m-n\right)}}}[/tex]

Step-by-step explanation:

Factor [tex]\bold{m^2-n^2}[/tex]

[tex]\bold{\left(m+n\right)\left(m-n\right)}[/tex]

Rewrite Equation

[tex]\bold{\frac{m^2}{\left(m+n\right)\left(m-n\right)}}[/tex]

Answer:

[tex]\frac{m^2}{(m+n)(m-n)}[/tex]

Step-by-step explanation:

Here we have to simplify the denominator of the expression given in the question.

We will use the formula for

Difference of the squares which us given as under

[tex]a^2-b^2=(a+b)(a-b)[/tex]

Let us now simplify the denominator

[tex]m^2-n^2=(m+n)(m-n)[/tex]

Hence

Our answer is

[tex]\frac{m^2}{(m+n)(m-n)}[/tex]