consider the function f(x)=15x^2+60-19 Part A: Write the function in vertex form. Part B: Name the vertex for the function

Respuesta :

Answer:

Part A) The function written in vertex form is [tex]f(x)=15(x+2)^{2}-79[/tex]

Part B) The vertex of the function is the point [tex](-2,-79)[/tex]

Step-by-step explanation:

Part A) Write the function in vertex form

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

In this problem we have

[tex]f(x)=15x^{2}+60x-19[/tex]

Convert to vertex form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)+19=15x^{2}+60x[/tex]

Factor the leading coefficient

[tex]f(x)+19=15(x^{2}+4x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]f(x)+19+60=15(x^{2}+4x+4)[/tex]

[tex]f(x)+79=15(x^{2}+4x+4)[/tex]

Rewrite as perfect squares

[tex]f(x)+79=15(x+2)^{2}[/tex]

[tex]f(x)=15(x+2)^{2}-79[/tex] -----> function in vertex form

Part B) Name the vertex for the function

we have

[tex]f(x)=15(x+2)^{2}-79[/tex]

The vertex of the function is the point [tex](-2,-79)[/tex]

The parabola open upward, so the vertex is a minimum

see the attached figure to better understand the problem

Ver imagen calculista