Respuesta :

Answer:

the answer is 66

Step-by-step explanation:

Theorem :If from one external point, two tangents are drawn to a circle then they have equal tangent segments.

Two tangents DB and BE are drawn to a circle from one point i.e.B

So, Using theorem

DB=BE =10 cm

So, Using theorem  

CF = CE = 15 cm

So, using theorem

AD =FA = 8 cm

Now AC = FA+CF = 8+15=23 cm

CB =BE+EC = 10+15=25 cm

AB = AD+DB=8+10=18 cm

Perimeter of triangle = Sum of all sides  

                                     =AB +CB+AC

                                     = 18 + 25 +23

                                     = 56 cm

Hence the perimeter of ΔACB is 56 cm